Reactive Systems Report #2003-1

Model-Based Testing and Validation of Control Software with
Reactis®

November 2003 Reactive
Systems, inc
WWW.reactive-systems.com

I ntroduction

An Overview of Reactis

21 ReactisTester
2.2 ReactisSimulator
2.3 Reactis Validator

Advanced Model Validation

3.1 Debugging with Tester and Simulator
3.2 Validating Properties with Validator

Enhanced Implementation Testing

4.1 SoftwareTesting
42 SystemTesting

Rever se Engineering Models from Legacy Code

Conclusions

Reactive Systems, Incorporated
120-B East Broad Street

Falls Church, Virginia 22046

USA

WWW. I eact i ve- systems. com

i nfo@ eacti ve-systens. com

Contents

Copyright (©2003 by Reactive Systems, Inc. All rights reserved. Please refer all inquiries to:

1. Introduction

Model-based development (MBD) is growing in popularity among engineers who develop embed-
ded control systems [Swo98, Bec00]. In MBD, executable visual models of embedded control
systems are developed in advance of system implementation. The models may be used to drive
the development of control software, and may also serve as a basis aoftware and system testing.
One benefit of MBD is that it allows engineers to begin debugging and validation activities at
design time, when the cost of detecting and dealing with design defects is much smaller than at
the software and system implementation level. Another is that models may be used as a baseline
for assessing implementation behavior during system testing and validation. For these reasons,
judicious use of modeling can lead to quite dramatic over-all reductions in the cost control-system
development, especially when robust tool support is available.

The Reactis® tool suite of Reactive Systems, Inc., substantially enhances the gains organi-
zations realize from MBD by automating testing and validation processes based on Simulink® /
Stateflow® models of control systems. Using Reactis, engineers may:

e generate test suites from a model that thoroughly exercise the model; and
e determine whether or not a model can violate requirements on expected system behavior.

The tool also includes an array of sophisticated model-debugging features.

In this paper, we discuss how Reactis may be used to automate different development activities.
In particular, we show how the tool may be used to develop more robust models, how it can
streamline software and system testing, and how it may be used to support the reverse-engineering
of models from existing control software.

2. An Overview of Reactis

A MBD environment involving Reactis, Simulink and Stateflow is depicted in Figure 1. Reac-
tis contains three core components: Tester, which automatically generates test suites from mod-
els; Simulator, which enables users to visualize model execution; and Validator, which automati-
cally searches models for violations of user-specified requirements. The remainder of this section
desribes these components in more detail.

2.1. Reactis Tester

Reactis Tester automatically generates test suites from models. The test suites provide comprehen-
sive coverage of different test-quality metrics—including the Modified Condition/Decision Cover-
age (MC/DC) test coverage measure mandated by the US Federal Aviation Administration (FAA)
in its DO-178/B guidelines—while at the same time minimizing redundancy in tests. Each test
case in a test suite consists of a sequence of inputs fed into the model as well as the responses

IMATLAB®, simulink® and Stateflow® are registered trademarks of The MathWorks, Inc.

Simulink®/
Stateflow®

Reactis®

Figure 1: Reactis is packaged as a plug-in for use with the Simulink / Stateflow modeling environ-
ment.

e . Cruise.rst
—— Reactis :
Simulink/ Test
Stateflow Tester
uite
Model
Test Suites
e Comprehensive Maximal bug detection
e Compact Quicker testing

Tests can be used to debug models, source code

Figure 2: Reactis Tester automatically generates comprehensive yet compact test suites.

to those inputs generated by the model. These tests may then be used for a variety of purposes,
including the following.

Implementation conformance. The tests may be applied to source-code implementations of mod-
els to ensure conformance with model behavior.

Model testing and debugging. The tests may be run on the models themselves to study and revise
model behavior.

Reverse engineering of models from source. Tests may be generated from models derived from
legacy code in order to check conformance between model and code.

Reactis Tester enables engineers to maximize the effectiveness of testing while reducing the time
actually spent on testing.

The structure of Tester-generated test suites is shown in Figure 3. A test may be viewed as a
matrix in which each row corresponds to either an inport or outport and each column represents
a simulation step. Test suites are constructed by simulating a model and recording the input and
output values at each step. The model computes the outputs at each step, but several approaches are
possible for selecting the input values to drive simulation. The input data could be captured during
field testing or constructed manually by an engineer, but these are expensive tasks. Alternatively,
the inputs could be generated randomly; however, this approach yields tests with poor coverage.

Reactis Tester employs a novel approach called guided simulation to generate quality input data
automatically. The idea behind this approach is to use algorithms and heuristics to automatically
generate inputs that cause coverage targets (i.e. model elements that the user wants to ensure are
executed at least once) that have not yet been covered to be executed. Reactis currently allows users
to track several different classes of targets, or coverage criteria. Two of the criteria supported by
Reactis involve only Simulink, three are specific to Stateflow, and the remaining are generic in the
sense that they include targets within both the Simulink and the Stateflow portions of a model.

Simulink-specific: Conditional subsystems. Branches of the following blocks: Dead Zone, Logi-
cal Operator, MinMax, Multiport Switch, Relational Operator, Saturation, Switch.

Stateflow-specific States. Condition actions. Transition actions.

Generic Decisions from logic blocks in Simulink or transition segments in Stateflow. Condi-
tions (the atomic predicates that are the building blocks of decisions). Modified Condi-
tion/Decision Coverage (MC/DC) targets.

2.2. Reactis Simulator

Reactis Simulator enables users to visualize model execution. Simulator’s user interface is similar
to those of traditional debuggers from programming languages: it allows users to step through the
execution of models by hand as well as set break points. Simulator also supports reverse execution,
the replay of tests generated by Reactis Tester, the graphical display of different coverage metrics,
and the capability to fine-tune Tester-generated test suites.

Test

Cruise.mdl
Simulink/ Reactis Step 1 2 3
Stateflow Tester ;—Slstte Inputs
Model on 1 1 0
accel 1 0 1
cancel 0 0 0
i decel 0 1 0
= Collection of tests
brake 0 0 0
= Test: a sequence of steps, gas 1 1 0
each step containing: speed 25 26 27
e Values for each input port of model OUtplftS
active 1 1 0
e Output values produced by the model throttle 0.1 0.2 0.0

Figure 3: Structure of Tester-generated test suites.

2.3. Reactis Validator

Reactis Validator performs automated searches of models for violations of user-specified require-
ments. If Validator finds an violation, it returns a test that leads to the problem. This test may then
be executed in Reactis Simulator to gain an understanding of the sequence of events that leads to
the problem. Validator enables the early detection of design errors and inconsistencies and reduces
the effort required for design reviews. Some checks that may be performed with Validator include
the following.

e Will a model-variable’s value ever fall outside a desired range?

Will a car’s cruise-control maintain vehicle speed within acceptable limits of the set speed?

Will a plane’s thrust reversers ever engage when the aircraft is airborne?

Will an x-ray machine ever deliver a dangerous dose of radiation?

Will a cellular phone “hang” when moved from a non-serviced into a serviced area?

3. Advanced Model Validation

A primary benefit of model-based development is that it allows the detection and correction of
system-design defects at design (i.e modeling) time, when they are much less expensive and time-
consuming to correct, rather than at system-implementation and testing time. Moreover, with
proper tool support, the probability of detecting defects at the model level can be significantly
increased. In this section, we elaborate on the advanced model-validation capabilities of Reactis
that help engineers build better models.

6

E- — e e I
Model I :
suite

Flag run-time errors

Revise =
model in = overflows un tests
imuli A on model
ST = missing cases
= bad array indexes
Afputs

No \ ok?

Check that model conforms
to user expectations

M
Done

Figure 4: Model debugging with Tester and Simulator.

3.1. Debugging with Tester and Simulator

Reactis Tester and Simulator support model debugging through the automatic generation of test
suites that thoroughly exercise the model under investigation (Reactis Tester), and through the
visualization of tests as they are executed within the model (Reactis Simulator). One such usage
scenario of Tester and Simulator is shown in Figure 4.

Since Tester’s guided-simulation test-generation algorithm thoroughly simulates a model dur-
ing test generation, it often uncovers many run-time errors. For example, overflows, missing cases,
and bad array indexes can be discovered. Note that this type of error is also detected when running
simulations in Simulink; however, since Tester’s guided-simulation engine systematically exer-
cises the model much more thoroughly than random simulation can, the probability of finding
such modeling problems is much higher using Reactis.

Tester-generated tests may be executed in Simulator, which offers a number of useful model
debugging features; some of these are illustrated in Figure 5. The figure includes a screenshot
of Reactis invoked on a Simulink/Stateflow model of an automotive cruise control system. This
example is one of several example applications included with the Reactis distribution. The up-
per window in the figure depicts the model hierarchy on the left and an execution snapshot of a
Stateflow diagram from the model on the right.

Reactis allows the user to choose between three distinct sources of input values when visualiz-
ing model execution:

1. Input values may be read from a Tester-generated test.
2. They may be generated randomly.

3. They may be supplied interactively by the user.

St ekt Read input values from
halt simulati% n when Take forward or reverse a Tester-generated test,

entering state simulation steps generate them randomly,
or query the user.

Reactis: cruise.mdl - cruise.rsi - cruise.rst

File Edit View Simulate TestSuite Validate Coverage Window Help

= & ®QQ 0|1 W« D w50 S | Test 4 (83 steps) v

- 8L ACIL Off/

R _ See current values of
sL DesinpdSpee entry - mode = 1

Stateflow variables or
Simulink blocks/signals

@ Active
8 Inactive [onOff == 0] [oantf ==1] /
s Int A

sL ThrottleCt JInput: onOFf (double) = 1.0}
sL Plant

ks Q} r——— - - = - - - - — = 7

lhwa' i [activa 1] | [set 1 &&
! (activate set ==
| entr m !-— b Anantninta —— N1 |[
| | Add To Watched <
| [deactivate 1] |
| | Open Distributid® Scope
7

L | Add To Scope »

4 > >

Test 4/5, Step 55/83 t=61.0

cruise.CruiseMain. CruiseMDL.CruiseMDL.Mode | mode (= |(B]X]

Visualize unexercised QKX (> ¢

parts of model

Dynamically open scopes
to view values of
Stateflow variables or
Simulink blocks/signals

Figure 5: Model-debugging features of Simulator.

As depicted, input values come from Test 4 of a Tester-generated test suite. The other model-
debugging facilities illustrated in the figure are as follows.

1. Users may take forward or reverse execution steps when simulating model behavior.

2. Users may dynamically open “scopes” to view the values of Stateflow variables or Simulink
blocks and signals. An example scope, depicting how the value of Stateflow variable mode
varies over time, is shown in the window in the bottom-right corner of the figure. This scope
was opened by right-clicking on the mode variable in the diagram panel and selecting “Open
Scope.”

3. Users may set execution breakpoints. In the example, a breakpoint has been set in state
Act i ve of the Mode subsystem. Therefore, model execution will be suspended when con-
trol reaches this state during simulation, allowing the user to carefully examine the model
before continuing simulation. Users may query the value of any Simulink block or signal or
Stateflow variable by hovering over it. Simulation may be resumed in any input mode, i.e.
reading inputs from the test, generating them randomly, or querying the user for them.

4. As shown in the execution snapshot, the current simulation state of the model is highlighted
in green and portions of the model that have not yet been exercised during simulation are
highlighted in red for easy recognition.

3.2. Validating Properties with Validator

The advanced model-validation capabilities of Reactis are implemented in Reactis Validator. Val-
idator searches for defects and inconsistencies in models. The tool enables users to formulate a
requirement as an assertion, attach the assertion to a model, and perform an automated search for
a simulation of the model that leads to a violation of the assertion. If Validator finds an assertion
violation, it returns a test that leads to the problem. This test may then be executed in Reactis
Simulator to gain an understanding of the sequence of events that leads to the problem. Validator
also offers an alternative usage under which the tool searches for tests that exercise user-defined
coverage targets. The tool enables the early detection of design errors and inconsistencies and
reduces the effort required for design reviews.

Figure 6 shows how engineers use Validator. First, a model is instrumented with assertions to
be checked and user-defined coverage targets. In the following discussion we shall refer to such as-
sertions and coverage targets as Validator objectives. The tool is then invoked on the instrumented
model to search for assertion violations and paths leading to the specified coverage targets. The
output of a Validator run is a test suite that includes tests leading to objectives found during the
analysis.

Validator objectives may be added to any Simulink system or Stateflow diagram in a model.
Two mechanisms for formulating objectives in Simulink models are supported:

Expression objectives are C-like boolean expressions.

Diagram objectives are references to subsystems in Simulink / Stateflow libraries.

O, @

Instrument model with

requirements specified Use guided simulation
as C-like assertions or to search for violated
Simulink/Stateflow diagrams requirements

Cruise.mdl

Cruise.rst

Reactis

Simulink/ . Test
Statefiow Validator
uite
Model

Execute tests that Reactis
lead to violated)
requirements Simulator

®

Figure 6: Reactis Validator usage.

Diagram objectives are attached to a model using the Reactis GUI to specify a Simulink system
from a library and “wire” it into the model. The diagrams are created using Simulink and Stateflow
in the same way standard models are built. After adding a diagram objective to a model, the
diagram will be included in the model’s hierarchy tree, just as library links are in a model.

Because of its sophisticated model-debugging capabilities, the Reactis tool suite provides sig-
nificant added value to the market-leading MathWorks Simulink/Stateflow modeling environment.
The great virtue of model-level debugging is that it enables engineers to debug a software design
before any source code is written. The earlier logic errors are detected, the less costly they are to
fix.

4. Enhanced Implementation Testing

The benefits of model debugging and validation have been discussed above. A question that im-
mediately presents itself is: How can the effort expended on these activities be “reused” to support
the testing of system implementations? This is the question addressed in this section.

4.1. Software Testing

A crucial aspect of the tests generated by Reactis Tester is that they also store model outputs.
Therefore, these tests encode all the information needed to ensure that model-derived source code
conforms to its model. Reactis-driven source-code testing proceeds as follows:

10

Eliminate tedious and
time-consuming task of
creating test suites
manually

Cruise.mdl N
Tester Test —| Simulator I

Visualize test
i .
— execution.
es! .
Source harness Fine-tune tests.
code

Does
software
behave like
model?

Automatic test execution Yes
enables engineers to test
early, test often, and find

software defects quicker.

Done.

Correct source code
and repeat.

Figure 7: Source-code testing with Reactis.

1. For each test in the suite, execute the software using the input values contained in the test.
2. Compare the output values produced by the software with those stored in the test.
3. Record any discrepancies.

This methodology is referred to as model-based software testing, and its key advantage is that
the model serves as an “oracle” for testing purposes: the outputs produced by the model can be
used as a basis for assessing those generated by the software. If the software does not agree with
the model, then the developer can assume that the problem lies within the source code.

The net effect of model-based testing with Reactis is better-quality software at a lower cost.
Because good test data is generated and run automatically, less engineer time is required to create
and run tests. Because the tests are thorough, the probability of finding bugs is maximized. Because
the test suites are compact they may be run quickly. In sum, Reactis dramatically reduces the costs
of testing embedded control software.

Figure 7 illustrates how the Reactis tool suite can provide advanced model-based testing of
source code. As the figure indicates, the model-based testing protocol supported by Reactis is as
follows:

11

1. The developer provides as input to Reactis a. ndl file representing the validated Simulink /
Stateflow model of the system under development.

2. Reactis Tester is used to automatically generate a test suite that thoroughly exercises the
given model according to the coverage criteria desired by the user.

3. The developer may deploy Reactis Simulator to visualize test execution and to fine tune the
tests in the test suite to further improve model coverage.

4. The test suite and the software implementing the model are fed as inputs into a test harness
to automate the source-code testing process.

5. By comparing the outputs produced by the software and the model when executing tests
in the test suite, deviations in the behavior of the source code from the model are readily
detectable and guide the developer in ensuring that the source code conforms to the model.

6. Testing concludes when the source code passes all the tests in the test suite.

4.2. System Testing

After software testing, the next step in certifying a system is to compile the code and test the
resulting executable on the platform(s), including microprocessor and associated system software,
on which it will eventually be deployed. Such testing is often referred to as system, or integration,
testing.

System testing typically involves the use of hardware-in-the-loop (HIL) simulation tools. These
HIL tools are expensive, and thus using them as efficiently as possible can promote significant cost
savings.

Provided that system-level models are given in Simulink / Stateflow, Reactis can greatly facil-
itate system testing. As in the case of software testing, test engineers can use Reactis Tester and
Reactis Simulator to generate thorough yet compact test suites from these models and feed the test
data into their HIL environments in order to check system behavior against model behavior. The
compactness of Reactis-generated tests means that expensive HIL hardware need not be “tied up”
with long test runs in order to get precise insights into system behavior.

How the Reactis-generated test data may be used in HIL testing will in general depend on the
HIL environment used. HIL tools typically provide a scripting facility for defining test runs. Saving
Reactis-generated test data in files and then writing scripts to read these files would represent a
natural way to inject Reactis test data into these environments.

5. Reverse Engineering Models from
Legacy Code

MDB technology can also play an important role with regard to legacy systems. Such systems
are often poorly documented and very difficult to modify to meet evolving system requirements

12

Reactis

—|
Model

Draft/revise

L model in Run tests
egacy lodel
Adel,

code
No agree?

Cruise.c

M
Done

Figure 8: Reverse engineering models with Reactis.

due to the fragile nature of the underlying code. It would benefit developers to have a precise
and unambiguous model of the behavior of a legacy system for which they were responsible.
Such a model would serve as a formal and executable specification of the legacy system, thereby
facilitating system maintenance, documentation, and evolution. The focus of this section is on how
Reactis can indeed be used to derive, or “reverse engineer,” models from code.

Figure 8 illustrates the process one would follow in order to use Reactis to reverse engineer
models from legacy code. Reverse engineering proceeds as follows.

1.
2.

The Simulink / Stateflow modeling environment is used to draft a model of the legacy code.

The resulting . nd| file is fed into Reactis Tester which then automatically generates a test
suite from the model. The resultis a. r st file (a Reactis test-suite file).

. The generated test suite thoroughly exercises the draft model according to user-selected cov-

erage criteria. Example coverage criteria include Stateflow state and transition coverage and
Simulink block coverage. Tester also eliminates redundancy in the test suite it generates in
order to eliminate useless test data.

Reactis Simulator may then be used to visualize the execution of the tests produced by Re-
actis Tester, and also to fine-tune the test suite to further improve model coverage.

. The test suite (the . r st file) and the legacy system source code are fed as inputs into a test

harness to automate the process of applying the test suite to the legacy code.

By comparing the outputs produced by the software and the model on the tests in the test
suite, deviations in the behavior of the model from the legacy code are readily detectable and

13

can be used to guide the user in refining the model to ensure that it faithfully captures the
behavior of the legacy system.

7. Reverse engineering of the model concludes when the code passes all tests generated from
the model.

The beauty of having a model to go along with a legacy system is that the model serves as
a formal and executable specification of the code, thereby easing the tasks of code maintenance,
documentation, and evolution.

6. Conclusions

In this paper we have described several ways that the Reactis tool suite provides significant added
value to the market-leading MathWorks Simulink/Stateflow modeling environment. Through its
sophisticated model-debugging capabilities, Reactis enables engineers to debug a software design
before system implementation is undertaken. The earlier design errors are detected, the less costly
they are to fix, so better model debugging can reduce overall software costs. We also discussed how
the comprehensive yet compact test suites produced by Reactis can dramatically reduce the costs of
checking for conformance between a model and system and of reverse-engineering a model from
existing control software. By automating tasks that currently require significant manual effort, Re-
actis cuts development costs. By enabling more thorough testing and validation to be undertaken,
it also enables errors to be detected and fixed before systems are fielded and therefore cuts recall
and liability costs.

Reactis is available now from Reactive Systems, Inc. Please see the Company’s web site at
WWw. r eact i ve- syst ens. comfor ordering information and for instructions on how to re-
ceive a free 30-day evaluation copy of the software.

References

[Bec00] P. Bechberger. Model-based software development for electronic control units (ECUs).
ATZ/MTZ Special Issue on Automotive Electronics, February 2000.

[Swo98] R. C. Swortzel. Reducing cycle time and costs of embedded control software using rapid
prototyping and automated code generation and test tools. In Proceedings of Interna-
tional Off-Highway & Powerplant Congress & Exposition, September 1998.

14

